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TWISTING FAILURE OF OENTRALLY LOADED OPEN-SECTION
COLUMNS IN THE ELASTIC RANGE*

By Robert Kappus
SUMMARY

The result of the present investigations 1s substan-
tlally as follows. The dbuckling of centrally loaded cdl-
umns of open section 1s always eccompanied by a twist 1f
the cross sectlon digecloses nelther axlal nor point symme-
try. Then the cross sectlions twist about an axis of ro-
tation D, the location of which devends upon the shape
of the median line of the sectlion, the wall thlcknese and
column length, and the limiting conditions. There are
three such axes and consequently three different critlecal-
compressive stresses (twisting fallure stresses). With
point symmetry of the croes section (wherein the case of
double-column symmetry 1s conteinod as a speclal case) the
three critical compressive stressos are givon in two Euler
strossos for (twist-freo) buckling in dirocction of the two
principal axos of lnertls and one twlsting fallure stress
for twisting about an axls of rotation passing through the
contor of gravity. With simple eross-section symmetry, 1t
finally affords one Euler stress for buckling in directlon
of the axis of symmetry and two twisting fallure stresses
for twisting about two axes of rotation in the plane of
symmetry. Buckling perpendicular to the axis of symmetry
1s therefore connected with a twlst of the column. The
thicker the wall and the greater the length of the columns
the more the effect of the twiast is neutralized, as the
distance betwoen center of rotation and center of gravity
continues to inerease until finally, the observed buck-
"ling 18 practically free from twilst.

This holds for symmetrical as well as for unsymmetri-
cal sections; the Fuler formula gives, .in this case, good
(slightly too high) approximate values.

*"Drillknicken zentrisch gedrﬂékter_Stgbe mit offenem Pro-
fil Iim elastischen Bereich.' Luftfahrtforschung, vol,.
14, no., 9, September 20, 1937, pp. 444-457, -
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INTRODUCTION

For centrally loaded columns of golid cross section-
or thlck-walled, hollow cross section, only one type of
ingtablllty of the "gtraight" equllibrium vattern 1ls rec—
ognlzed -~ namely, twist-free buckling, which is usually
termed flexural buckling or (in the elastic range) Euler
buckling., Tor cross sections of thin-walled open or
clored soctlion and short column length, another type of
instablillty in the original equilidbrium pattern is of 1im-
portence, namely, the buckling of the less bending-resis-—
tant walls due to inferior wall thiceckness. Lastly, there
s yet a third instability phenomenon observed on thin-
walled columns of open section -~ that 1s, lorslonal bdbuck-
ling or, as 1t is also called, twigtins failure. Here,
under a certain critical compresslve force, the stralght
equllibrlium pattern may be accompanied by infinitely ad-
Jacent twisted equilibrium patterns wheredy, 1n contrast
to tho case of dbuckling, the cross-sectional shape is pro-
served and the stralns due to recivrocal twisting of the
crose soctlong adbout a well-dofined axls of rotation are
glven. .

The roason for the importance of twisting fallure be-
ing rostrictod to columns of thln-walled open section, ig
due to the fact thnt opon sections ~ esveclally, when
thin~walled - posscse an oxtremoly low twlstlng strength,
Tvigtlng falluro 1s most often ond most clearly observed
in alrplone designg where the employed sectlons usually
have nmuch thlnner walls than i1s customary on other struc-
tures. Aviation literature on this stabllity problem is
substantially exhauveted with a theoretical treatlse dy H,
Wagner (reference 1), and a further report by He. Wagner
and 7. Pretachner (reference 2) which also contains test
data for angle sections. In structural englneering 1lit-
erature, the twlstlng fallure of centrally loaded columns
doos rnot avvoar at all - as far as the writer known - ex=
cept for ono recent article by H. and F. Bleich (reference
3). In this report the writors use tho onergy method for
the derivation of the differentlal equations for the straln
quantlties, whlle Wagner attalns a clearer dlfferential
equation for the angle of twist from a conslderation of
the moment equillibrium about the column axls. In spite of
the fundamentally identical assumptions, the results do
not agree, and for the followlng reasons?

Wagner defines the axis of rotation, to begin with,
on the inconcluslive assumptlion that the center of rotation
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on twlsting failure is coincident with the so-called "cen-
ter of -shear," .while..H. and F. Blelch's formmla for the
work of the.external forces, falls to include the term
which accounts for the twilsting of the cross sectlions.

In the following a complete theory of twisting fall-
ure by the energy method is developed, based on substan—
tially the same assumptions ag those employed by Wagner
and Blelch. Problems treated in detall are: the stress
and strain condition under St, Venant twist and in twist’
with axial constraint; the concept of shear center and
the energy method for problems of elastic stablllty.

l, CENTER OF ROTATION AND WARPING UNDER
ST, VENAKT TWIST; SHEAR CENTER M, TWISTING

WITH AXIAL CONSTRAINT

Figure 1 shows the median line of an open section
with several essentlal symbols. A rectangular system of
coordinates x, y, 2 18 passed through the centroid S
of one erd cross section of the correlated column; x, ¥
are arbitrary centroidnl axes of the crose sectlon, and =z
the column axls; axes x, y, 2 aro to form o right-hand
syatem; l1.e., the 2 axls in figure 1l polnts toward the
obcerver. We arbitrarlly fix a direction of rotation and
theredy sallocate to each point of the sectlon center line
e circumferential coordinate wu. Suppose the direction of
the positive sense of rotation indicates the positlve tan-
gentipl direction t; at right angles to 1t, the poai-~
tive normal directlon n points toward the rlght, as ob-
served wvhen looking in t directlon. The distances ry
and 71, of the tangent and of the normal, equal the dis—
tance r of the particular point from the centroid 5.

A line drawn from 8§ 1in positive n dlrection indlecates
the posasltive ry direction. Thls and the x direction
form an cngle « to be measured in the positive gonge of
rotation (rotating from +x toward py)., If the t di-
rection relative to S has, say, o posltive sense of ro-
tation, ry 1s vositive according to the preceding nota-
tion. Correspondingly, =r, 18 coiunted positive when =n
rotates positive 1n relation to S.

Congider & column, as in figure 1, under the effect
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of tvistling moments T applied at 1lts two free end cross
sections in -conformity vwith St. Venant!s theory of twist.
The crogs—-sectional shape 1g preserved and all stresses
and strains other than the angle of twist @ are unaf-

fected by 2. The "reforred" angle of twlst o' = g% is

conptant. With G = ET%IET as shear modulus and Jp =

(%) U-8® as twisting strengthl) wherody U 1s the devel-~

oped contour of the center line of the section and s 1s
the wall thickness, 1t 1s T = G Jp ®'. The linear dig-

tribution of the shearing (twisting) stresses Ty over

the wall thlckness 1n any cross sectlon 1ls exactly the
sare 28 in a small rectangular strip. In particular, the
shearing stress in the center llne of the sectlion ls zero -
as a result of which there i1s no angular change between 1t
and tho elements of the surface (longltudinal fibers).
Every olement of the modian line of the sectlon remeins
perpendicular to the correlated fiber, which remalns
gtralght, according to the linearized theory. Then sinece
the fibcrs, depending on thelr distance from the conter of
rotation, are differently 1nclined, the cross sectlon does
not remain flat. If the rotation 13, for instance, about
an axls passing through S, the displacement of a point
in tho cross—sectional plane is given with V = r @ (fig.
2); the component in tangent direction is accordingly:

Vg =r¢ @ ' (1)

There belng no angular change between the cilrcumferential
and the fiber element, the dieplacement 1s:

oV oW
L T
Y= o * ou ° . (2)

where W 41ig the cross~sectional warping (positive in di-
roction of the positive =z axis). With the introduction
og the upilt warving w (of the dimension of an area, fig.
1) as

u =uR

. /P 83 du.

u=uq,

1)

il

For wvariable wall thicknoss JT =
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'W=-CP'w ) . (3)
equation (2) (with equation 1) glves = while observing’
thet according to assumption, W, ', w are to be 1nde-

pendent of =z, %ﬁ = rt,a) that 1s:

u

w o= wO +f rt du (4)

o
If the rotation instead of about S 1is around any
otner point of rotation D wlth the coordinates xp and

¥p+» through which a coordinate system X, § 1s placed
parellel to x, y, 1t correspondingly gives

i = wl v (6)
u
and § =8, +/ Fy du (7)
Flgure 2 1lllustrates theofollowing relations:
Ty =Ty + Xy co08 @+ Fg 8ln o (8)
and . .
du cos a = dy, du sin a = =« dx
hence
i.c.. -
- ¥=w+3x35~Fgx+EK (9)
or .
¥=w-xpy+ypx+ K (9¢)

2)Strictly sneakling, these relations are wvalld for the

. u
conter line only; w = J ry du + r, n 1e more exact.

Since n, at the most, 1s equal to s/2, the cross-sec-
tlonal warping ry n, superposing themselves on the clr-

u
cunferential warping [ ry 4du, ocan be neglected.
0
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The unit warping % send w for one and the same
gsoctlion differ accordingly by one linear expression in x
and y. In both cases the same stross condition prevails
and the recinrocal strains are completely the same. Tho
differonce in warplng lios mercly in tho relation to dif-
forcnt reforonce plamcs, which are pervendlicular to the
momontary axes of rotation of the twisted column. Accord-
ing to St. Vonent'!s theory of twlst, tho poslition of tho
axis of rotation 1s, on principle, undetermined bocause,
geilnce 2ll flbors remain straight, each fiber and each one
parcllel to it, may soerve as axls of rotntion. TFixilng
tho axls of rotation - say, through hinges -~ and prescrlbd-
ing the werpving of any polint, establishes the warpling of
all polints 1f the load in the end sections 1s applled in
accord with the theory. But the axls of rotation can
also bo cctnbdblished, as seen from equation (9%, by pre-
scribing the warping of three (no% lylng on one straight
linc) vpoints arbltrarily, because threc of such equations
suffice for the corrcct solution of tho unknown factors K,
xp, ond yp. The froquontly entertained opinion that in
St. Vonant'!s twist the nxis of rotation would always have
to pass through ono definite point, the center of shear M,
ls therofore untenabdle.

Since the concopt of shoar ceunter 1ls bolng used re-
peatodly in this report, o dbrlef discussion of tho formu-
las dofining 1te positlion is givon. Putting ~ thin-walled,
oven~scctlon column undor troansverse load results, in gon-
cral, in twisting in addition to wnrping. Warping 1s not
accompanied by twist (definition of shear center) if the
tronsverse force passes through tho center of ghear M.
Asguming linear distribution of the bending stresses in
twlst-frco bonding ond dofining the shoaring stresses due
to transverso force in the usual manner from oquillbriunm
conditions, the staotoment that in thls case tho transverso
forco rolatlve to the shoar ccnter may have no momont,
leads to the agbsequent definition equations for the
shear center:"

J/ xw 4F = 0 and / y w 4F = 0 (10)
~“F 'R

S)For the derivatlior of these formulas as well ag of those
used for integration of arbitrary sections, see the arti-
cle ﬁntitled: "Shear Center of Thin-Walled Secticns,” by
W. Iucker, published by the Static Teet 3Branch of tho
D-V.L-



HeAoC.A, Technical Memorandum No. 851 .

Here x, y "denote any coordinate-  system passing through
5, 8and& the unit-warpinga_.wf,"refe;rgg‘to shear center
H are given with T e

v o= ow,t +f ry* du ' (11)

. o
wherseby rt' equales the distance of the clrcumferentlal

tangent from the ghear center (fig. 2). Oa the basis of
the coordinate system =, ¥ parallel to x, y placed
through the arbitrary (to be chosen properly) reference
proint O, figure 2 indicates

Ty = ry" + Xy cos @ + Ty sin a (12)
From u
¥ = W, +!j/ Ty du (13)
follows °
W= F - Iy y+yyx+ X (14)

The introduction of (14) 1in (10) then gives the two equa-
tions (16) for the coordinates Xy yy of tho shear cen-

ter M

]
M Yx M “xy Jy - (15)
—Iquy+yMJy=- FIWdF

While no particular importance attaches .to M in the
cagse of St., Venant's twist, it plays a significant part
in .twist with axial constraint, where ®' = dp/dz 1is no
longer constant. This cese occurs, for example, 1f the
colurn 1s clamped at one end or when, other than the end
moments, individual moments or distributed moments. (my)
are applied in addltion. Then the axls of rotation always
passes through the shear center as shown later (equgtion
18). All other fibers bond, because the warping W is
not constant as a ropult of the changeabllity of @' and
stroins ¢* =0W /3dz and stresses .o =.E€*  occur in
congeguonce 1in column dircetion. Inasmuch as the stresseos
o* themselvas then aro variable agaoin, it simultaneously
results, for roasone of equilibrium, in shearing stresses
T* constantly distributed ovor the well thickness, cours-
;ng in the direction of the column axis and of the circum-

8T ONCO.
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Unless the column length is abnormally emall, these
shearing stresses T* remaln small compared to the axial
stresses o¢*, 80 that the related oquations Y, in sccord-
enco wlth the usual assumptlon of thg elementary beam the-
ory, may be ignored. The warping W of open gectlons 1s,
therefore, under the assumption of preservation of cross-
sectlonal shape, to be computed in the same manner as in
pure St., Venant's twist, where no slippage in the section
line occurs elther. From the gartial djfferential equa-
tion (2) circumscribed for Vi and W 1in conjunction

with the unlt warping w* defined by equation (11) fol-
lovs:

T = - o' w* + £(z)

hence

o* =E e = E(p" wrirt(z)) (17)

Ags the twlsted column is to transmit neither axial
load nor bending moments, the axial stresses o* for each
cross soctlon must form en equilidbrium group; that is, 1f
F ls the cross~soctlonal area

k] /1
/cr"‘dF:O.J x o dF = 0, /yc"‘dF:O

YF : (18a,b,c)

Since f'(z) 1is constant over F, and x and y are cen=-
troldal exes, the equations (10) follow direct from (18b,c),
whlch proves the coincldence of conter of rotation and cen-
ter of shear in this canse. ZEquation (18a) gives:

£1(z) = " %‘./ w* 4F (19)
¥

/ w* dF = 0 (20)
F

which is alwaoys possible with suitable choice of wy* in

'(11) or of K 1in (1l4), affords the followlng simple rele-
tions:

Complinnce with

T = - ' (16')

=

and o) ~ E " w* (17)

—
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The shearing stresaes T* follow from the egquilibrium
~condltlon for.forces-in the z _direction at a small ele=-
ment & du ds: : S T

a_(.'l':.ﬂ.)..psgg.:.._._o (21)
d u oz

The shearing atrgsses ™ aFf form a force couple of the
magnitude -~ E 0 @'"', vheraby the term

c* =/w*“ ar (22)

1s dosignated as woarping strength relative to M.4) The
twisting moment of the shearing strossos Tp Dbeing givon
with @ Jp @', the term for the total twisting moment
rooadss

T=GJIpP' -~ EC @' (23)

Dospite the fact that the shearing stresses T are usucle
ly substentially smaller than the shearing stresses Tp,
botkh share noproxircately aliko on the total twisting moment,
according to numerical calculations. This ig due to the
fact that tho lever armg of T are of the order of magni-
tude of the soction dimensions, while tho lever arm of Tn
is oqual to 2/3 of tho wall thickness.d

Tho calculation of the angle of twigt along the =
axis for prodetermined individual twisting moments M, and
distributod moments m, hinges on the lntegration of theo
differontial cquation:

- 4% .z 0" PV - ¢ Jp ©" = mg (24)

4)Sfl.::me tvlsting with axilal const:nint 1s at tlmes termed
"flexurnl torelon," the quantity O© is also deslgnated as
torslon-bending constant (Cpq or Cpp (references 1 and 2).
But in the above case, the torm "torslon bending" 1s mig~
leading since twisting moments, but no bending momonts, are
trrngmitted (equations 18b,c). . .

5)Th;s is rondlly proved on a simple examplo of the I gec-
tion. The axilal constraint causes tho flanges to warp and
act like individual bars; that is, have linear distridu-
tion of 0* and parabolic distribution of T*, while the
web discloses no further stressos aside from Tp.
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The limlting and traneltion conditions devend upon
the worping and stresses ot the bordors; they are obtalned
from (15'), (17'), and (23). With complote conmstraint,
for cxample, we have @' = 0; with no constraint, it 1is
o" = 0,

2. STRESS AND STRAIN CONDITIONS AT TVISTING FAILURE;
ENERGY TERMS Ay AND A,; DIFFERENTIAL

EQUATIONS FOR THE STRAIN QUANTITIES £., T4, @

To goln en 1neight into tho forces involved at twist-
ing folilure, conglder a contrally loaded open—~section cole
umn (fig. 1) under the effect of the critical compressive
force P. In nontwisted condition each fiber is undcr tho
same comprosslivc stross; that ig, in the critical case the
twistinz-foilure stress 1s op = P/F, While o0p ond, con=-
sequcntly, the compression of the column represent flnlte
quantitios, tho strosses and strains incurred on transitlon
from the gtralght to the twistod equilibrium position, must
be looked upon as small quantities of tho first order of
smollness. To them, the same relations, expressed in the

preccding chaptor with equations (161!), (17'), (18a), end

(19) to (23) apply, except that now the tcmporarily un-
known contor of rotatlion D 1a no longer coincident with
the shear centor M, sincc the statomont contained in (18D,
18¢) no longer holds true. The torque of the shearing
forces in each cross section with resmect to the axis of ro-
tation D can be computed from (232. vhere D substitutes
for l; accordingly, instead of C

of =/ w2 aF (25)
“F
vhereby (7) and (9), respectively, are valid for the unit

warping W referred to ccnter of rotation D, and ;o
and K wmst be so defined that

I

/EdF:O
Sy

For reasons of equllibrium, an antl-moment related to the
external load 1s necessary; this is accomplished through
the olope of the longitudinsl fibers toward the axis of
rotation at angle r @', so that the components of the
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compresslve forces op dF perpendicular to the axils of

"rétgtion} ¥16ld a rotating moment of -

e}
/GD AiF T o' T =o! O':DJ'P
r

about the column axis. The equilibrium of the moments
about the’ axls of rotation then affords the differential
equation: ° :

EC ¢V + (0p Jp = ¢ Jp)e" =0 (26)
from which with

® = & sin HTI (27)
follows the critical stress éﬁ:

3 ~
G Jm + Tz E C

Ip

But thls formula does not as yet allow the calcula-
tion of the ecriftical stress Op, since the positlon of D

remeineg unknown, For the most general case of lack of
cross~sectlon symmetry, the two other condltlons for mo-
ment equilibrium about two cross-sectional axes are still
negeded. In twiet with axial constraint, these esquilibrium
conditlions lead exactly to the shear center (oquations
(18b,e)); here, however, the G substituting for o© must
be so distributed that thelr moments on the assumedly iso-
lated part, are in equilibrium wlth the moments of the ex~
ternal forces due to the strain. Both moments are of the
first order of smallness - the first on account of o,

the other on account of the lever arms. In Wagner'!s for-
mula, where D i1g equated to M, that ias,_tho samg as
(28) 4f D 1s replaced by M (that is, C by O and

Jp by J5%), these oquilibrium conditions are violated.

Intonding to resume these equiliBrium conditions in
sectlon 5, we now proceed in a simpleo manner to the deri-
vatlon of the differential equatlon of twlsting fallure by
means of the onergy method. To this the energy of the in-
terncl end external forces (that 1s, tho total potential)
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must be expressed through the stralns, after which the
differentlipl equations - the mathematical expresslion for
conslstency of stross and straln on the oclement - thon
follow purely formally in accord with the rules of cal-
culus of variations.

By A4y 1is meant tho difference between the strain

energy of the twisted and the straight equlillbrium pat-
terns under critical load P, end by A,, the energy of
the critical compregseive force P on transition from
stralght to twisted equilibrium position. Both expres-
gslons must - since this relates to a stability problem -
be gquadratlic functions of the strain quantities and, con-
sequently, of the second order of smallness. Since the
twilsting process takes place of 1tself, i.8.,, without en-
ergy input, the total potentlal of the lnternal and ex-
ternal forces A3y -~ A, retains the value O of the ini-
tial conditlon. Of course, the validity of Ay - Ag =0
1s contingent upon the correct strain in the enorgy terms.
For all other geomotrically possible stralns below the
critical load, the energy required is 43 - 45 > 0, the
very fact upon which the nonapvearance of thoso stralns 1is
based. For actually possible strains, 1.c¢., compatible
with tho oquilibrium conditions, 43 - 4, 1is a minimum of
velue O. Thig dual statement supplies the critical load =
tho so-called stability 1limit, ns well ns tho strains (de-
finod up to an arbitrary factor). Expressod in the form
of thec calculus of verintions, the minimum reguirement
reads 6(A; =~ Ag) = 0. It always embodics the other dic-

tum A3 - Ay = 0, =as can be proved.

The strain energy A4 absorbed by the column of
length 1 at twisting failure, is:

z=1

ra ~3 a

/ {Ef € dF + G Jp @' }dz (29)
I [

/ F

- l
- ¥ 5
z=
Thoe egsumptlions we shall make are as those made for twlst-
ing with axial constraint. The cross sectlion retains its
shape,6) so that the stroin may be oxpressed by three quan—

6)No floexural loads being apvlied vorpendicular to the sur-—

face of the column, the assumption of prescrvation of croacs-
sectional shapo holds wlth great accuracy, falllng only wihen
tho longths or wnll thicknosses are vory small, as then tho

walls nay bucklo.
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tles: For example, the anglc of twlst o end the dls-

" placemonts !5 and T, --of -the-centrold 8. relative_to

the vositlon of the center of rotation D,. which are to
be measured in the direction of the x and y axes of
the cross sections of the untwisted column. Then

S
I

=-0'Ww (30)

my

n
wiow
™ =

= - q:" i" (31),

replace (16!'), (17!), and (20)

and

/idF:O (32)
“F

whereby (32) voices the equilibrium condition essential to
the stability prodblem, namely, that the axial force (=P)
remalns unchanged. XEquation (9) herewlth becomes:

2
;=w+.EBy—§-BI-%J/wdF (33)

with F
Es"—"igcpv ns=+isq’ (34)

then follows from (31) the important relation for the
gtrain distrivution:

!

=-§g“x-'ng"y—cp"( -%14‘11 dl‘) (35)

m?

after vhich a simple computation and the introduction of
(35) in (29) gives the strain energy 4i:

z=1
‘r " na
Ay = :,12-/ 1% % l_g,,“a + 28 Jey b Mg + B Jg Mg +
2=0 .+ OF Ry gsn tp"

+E 0 @"%+ @ Jq q.\'a}d.z (36)

+ 2E By Ng" @" ¥
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Herein:

H
R =/':Ewd]' (37)
F

(38)

¢ =/)deF-%(‘/‘wdF)a (39)
Jo -

The quentitles Ry, Ry, and C are dependent on the

shane of the cross section only. In conformity with the
concert of gtatlc moment Ry (and Ry) are termed "curv-
inm moxnent for the x axig" (for the y axls, respective-
ly), C the "curvine gtreneth relative to 8" (cf. C',
equation 22)., For symmeitrical sections, for instance, the
course of the unit warpving w 1s antisymmetrical, 1f the
point of the section center line which meets the axls of
symme try is coordinated to zero warving (equation 4).
Thus, R, = 0 for symmotry with the =x axls, eand Ry = 0
for symmetry with the y axis. 4s x, ¥y are centroldal
axes, these relatlons are applicable to any other determi-
nation of the arbitrary constant w, as well.

o
M
fl
h;\.a

|

b ]

a
=]

The enersy A, of the external foreces - that 1s, of
the comoressive force P -~ due to contraction of chord on
buckling of the fibers, 1s computed as for the buckling
Euler column, since as a result of the rotatlon about the
axls of rotation D all orlglnally straeight fibers change
to plane curves. With ¢ and TN as displacement compo-
nents of any cross section polnt, it 1s:

z=1

1 v
Ly = oOp % / / (¢'2 + n®) ar az (40)
% IF

According to Buler!s theorem of kinematics, the motion of
a point is built up from tho motlon of any reference point
and the rotary motion around that point. For S as ref-
erence noint, 1t thon ig:

¢ = g ~y®, N=Ng+x0o (41)
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Consequently, since x, y are centroidal axes,

z=1

a = 0D 2 ‘/(‘ {n%gs'a + Ngt?) + (Jp + Jy)m"} iz (42)

Z=0

A

According to the rules of calculus of variafions:
8 (44 = 4,) =0 (43)

then affords in simple manner the three differential equa-
tlons for tho strain quantities &5, Mg, @

T v PR > A TN

»” ] I v y — -
gyl !V + 2 g ng’V + EBg@ T + g T R," =0 v (44)

E,BFQEBIV + BN, + B 0ol 4+ (O Ip = 6 Jp)9"=0 v (44c)

o V¥ (442)

-

They state that the forces following from (30) must be in
equllibrium at each column element %aix equilibrium con-

ditions in similar manner as thls is expressed for a Euler
colunn buckling in the xgz plane by the differential equa-

tion E Jy EIV + P §" = 0, which, with observance of the
strain low By = - E Jy t" follows from the equilibrium

3B oQ
2y —X n
condltionsgs 57 = and 3z = PE,

Because equations (44) are coupled together, the three
quantities §B. Mg, and @ usually oceur concurrently; but

if symmotry prevails, it is otherwise. With symm try to
the = oxls, for lnstanco, equation (44a) 1s independent

of (441) cnd (44c), because Jgy = 0 and By = 0. In this

cagse o deflectlon §B, independcnt of 1Ty and ¢ ig pos-
sibloe.

In the slmplest case of double symnmetry, the throe
equations and with them tho strain quantitios ¢, T,, and

® thomselves, aro indopendont of each othor. Accordingly,
thoro ore then, three different dbucklling processes, of
which, of course, only the one with the lowest critical
compressive stress ls of practical -significance. The crit-
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1cal compresslve stresses GD; = cy, GDa = Og» dDa = 0Og

bg = 01 sin Z¥, N, = ag sin Z%, @ = a, sin %f (45a,b,c)

13 1

at
a = _—, (o) = 46 . 47

T B Ty

and
a
o, = ' (48)
8 JP

Under the critical twisting-failure stross, according to
(48) the column thus twists about an axis of rotation,
passing through tho contr%id S. For an I section, for
example, i1t neans, with if h 1ig tho holght of

the wob, and D 1s tho width of the flange:

Og = ______Q;_lﬂ_ih_+_£hl_ﬂ__l_ (49)

La 4> + 12 b n® + 2n®

To make twisting failuroe voseible practically, tho I gec-
tion must not only kavo the proper thin wall, but 1ite flonge
wldth must excood tho hoight of the wob; for tho condition
of smoller Oy thon tho Buler stross for buckling about

the wod exlag, reads:

(%Jf + 0.468 (h + 2b)a g2 12 <1 (50)

For sectlons without axial symmotry but disclosing
point symmotry (for oxample, Z scctions with equal legs)
(ocquations 44) also aro not coupled because By = Ry = 0,

regerdless of whothor the controidal axes =x,y aro princi-
Pcl axcs of inertia or not. And tho twisting fallure again
occurs ecbout an axls of rotation through § undor criti-
cal comprossive stross o, according to oquation (48).

In tho most gonoral cnso of asymmotrical open soc—
tions, nonc of tho strossos cited in equations (46) to (48)
1s o critical compreessivo stross. The critical values
Op,* Opg» Op, then follow as roots of o cuble oquation,
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With simple symme ¥ry tholr place is taken by a linocar and
e guadratlc equation.

o Blolch®!s article lacks the essentlal term GD(Ji+Jy)
P’ in the expression for A , though the expression for
the straln eonergy Ay 1s as to contents in agreement vwith
(36) Closed formulas for the quantities Ry, By, C of
the type of (37), (38), and (39) are not given; the con-
copt of unit warping itself is not employed. Their inves-
tigation 18 restricted to contoured columns duillt up from’
flat plates. They proceed from the curvaturos of the ine
dividual plates expressed with threoe straln quantities
sy Mg, . ond to which the conventional theory of beam
flexure i1s spplied. Theo strains (&) are made proportion-
al to those curvatures and a linear distribution 1s postu-
lated along the stralght plecos, of which the cross sec-
tion consists. With =n .plates it affords for the calcu-~
lotlon of the =n wunknown strains at plate center, n - 1
transition conditions and one equilibrium condition (equa-
tion (32)). The calculation of these n unknown strains
muast bo cerrled through first for oach sectlon. And even
then the expressione for R,, By, and C (given for some
soctlons by Bleich) follow only after tho dovelopment of
the oxprossion for 43. Tho lack of torm GD(J1+Jy) p's
in tho cxpreassion for Aa rogults In the completo ebsonce
of op in Bloich'!s equation, which corresponds to equa-
tion (44c¢).

3. SPECIALl. CASE OF SECTION SYMHETRICAL WITH
X AYIS, CHANNEL SECTION AS EXAKPLE

For symmetry with the x axils, it ig: Jyy = O and

By = 0. T, is releases (44e) from (44b) and (44c), which
are coupled through R, £ 0. The solution is again ef-

fected with (45) but now ay and a, are no longer inde-
pendent of each other. Egquation (44a) becomes:

]
By bV opr it =0 (51)
with which (45a) becomes:
8
) m
O-DJ. = O. = '-LT —— - ) (52)

From equations (44b,c), now written:
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T J-x nsIv + E By cva + 0Op F Tla“ = 0 (53a)
ER NV +EBC gV + (OpJy-0Jp)o"=0  (53D)

follow two homogensous llinear equations for the unknown
8, and a,
4

4
[¥4EJx-¥—:-GDF]aE+['_;’JTERx]a5=O (542)

4 4 '
I ® R, ]aa + [%1 EC + %; G Jp - %; Cp JP] a5 =0 (541)

" which have a solution other than zero only when their de-
terminant disappears:

e
18 Ix

td

-'O'DF ERx

e"ml :]m

0 (55)

%% ER, G Jp+ %; EC - o Jy

Thls conditlon affords a quadratic equation'for the
two critical compresslve stresses Dy and °b3' Abbrevi-

ating (47) and (48) with the added abbreviation (dimension
of a stress

o = T —=- (56)
1 & F JP
equation (55) can be written as:
O’x - GII px .
= 0p2 - 0Op (Og+0x) + Og Ox =~ pg3 =0
Px 0g - Op (57)
that isg:
Oy + Op +— - o\2
0. = -8 T °x M/[._a____x> + o 2
; —= ) /(=3 P, (58)

This relation can be represented by Mohr'!s circle
(fig. 3) end thus enable a simple graphical solution of
op from Oy, Ox, and py. The smaller root 1s seen to be
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conslstently smaller, the greater root consistently gréat—

..er than o, and 0y, The strains correlated to Op, and

op, =are giyen'with equations (45b,c), from which follows: .

Mg = ;% =Xy =~xp@ (69)

The cross sections accordingly twist about the centers of
rotation Dz and D3 1lying on the axis of symme try and

whose coordinates Xpp, éand XD, » after lngertion of Opg
and Op, in one of (54), give: '

nd
xp = - 28 . __1f * B . [Pp __Px__ (60)
a 2 F O_ - O
3 fﬁ EJgy - Op F x D
o oree G Jp+ M EC-o0pd
e oo Ba__ T AT D [ om0 (g
? 3 n2 g R 7 Px
1«8 p.<

For p, # 0 1t 1s op # 0, and Op # 0y ; the value

for xp 1ia, in consequence, always finlte. In other

words, we obtaln the important rosult that on a symmetri-
cal open section a buckling in direction (y) perpendicu~
lar to the axis of symmotiry (x) 1is always accompanied by
column- twist. PFor very thick-walled seoctlions, of course,
Oy 18 very great on account of the groat twisting strength

so that Op, ~ 0y and Op, = 05. This is recognized from

Mohr's circle or else from tho approximate formulas vhli#
for grost ratio 0y/Gy:

= Px®
GDa ox - T (62)
0. 8
op, = 0g + %f— . (63)

followiﬁg from (57) or (58). In this caso, for Op, *
0y the centor of rotation D, 1s extromeoly remote from
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tho centroild, while for very high twlsting-fallure stress
op, ™ Og, the conter of rotation Dy 1s elmost coinci-

dent wilth the centrold. On sufficiently thlck-walled, sym=-
metrical open sectlions, the buckling in directlion perpen-
dicular to the axis of symmetry is therefore practically
free fron twlst.

Bleich, lacking the term -0y JP in the determinant
(55), reached instead of (57), the linear equation:

(o, - OB1eich) T = Px” = 0 (64)
.with the slingle solution7) o
OBleich = %% ~ gf_ (55)
This forrmula which, with observance of
%; = EI /T = XM (66)
x de/E; iP
(oguations 47, 56, and 15) nay also be writton as
2
OBleich = Ox (} - ffs g:) (67)

agrocs with tho apnroximate formula (62), valid for very
small ratio cx/os, and supplies for that reason useful
values for the convoentional sections and lengths used in
structural englneering. But for the thlin-walled sections
customary in alrplane design, the discrepancies between
OBleiech @&hd Op may become qulte considerable. From the
theoretlcal polnt of view, 1t 1s even more essontial that,
according to Blsich's formula for A4,, one of the criti-
cal compressive stresses alwaye be lost. According to that

theory, for instance, twisting failures of point symmet-
ricol sections should be impossidble.

7)Bloichts equation of the critical load, written with our
notation, reads as follows?

R,82 nd B J
Pgieten = P (1 - G Jp J v Py a
Ty (c ) l
B

Al e
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The boundary conditlons for the case correesponding to
(58) are, as subsequently established from (45) for both

‘cagés (2 =0, 2=1)tN;=0, Ng"=0 and @ = 0,

@ = 0. It means, according to (31), that & = O; that
s, complete axlial nonconstraint obtains. For it, W =

-~ o' ¥ with o' # 0, according to equation (30). The
exact reclization of these boundary conditlons, even on the
slmplest cross—sectional forms, would require special sup-
porte wlth several knife edgesn, in order to ensable the in-
dividual parts of the support to follow the cross-sectional
warbing.

Vith complete axial constraint (say, by welding to
rigid supoort plates, etc.), the followlng formulas revlac-
ing (45) are appropriate:

Ng = ag (l - cog E%_j)_ P = as (1 - cos 2%_5) (68)

4t both boundaries wo havo @ = 0 and o' = 0; thet
ia, W = 0, according to eqpatlon (30), and in addition,
Mg =0 and MNg' =0. 4s ® =# 0, & 1likewise 18 & +# O,
according to equation (31). ZEvorything else follows in
tho samo mannor as beforo; 1in equations (54) to (58) 1/2
rcplaces V. :

For other boundary or support conditions, it 1s recom=-
mondecd to obtain by teste a substltute length which re-
Placos 1 in (58). The substituto length lies always bo-
twocn 1/2 ana 1.

For 1llustration, we repoat thc formulas for a channel
sectlon. Tho solutlon of the unit warping, of warpling mo=~
ment Rx- and warping strength €, 1s carried out 1in soc-~
tion 8. With & ns wed height, and b as flange length,
it ig:

n2 B a8 (a+6b) m2 B 53(§a+b) ' .
g, = D5 a° , O, = & 69 70)
T T 7T 12(ared) ¥ 18 3(a+2b)°® (69), (

2 C2DB° (2a.a+15ab-l.-26'ba) + 4 E(cﬁab):’ a2 18
Gg = B—F —— . m B : (71)

1°  (a+2Db) {na(a+6b) (a+2b) + 4b=(2a+b)}
a -}

Py = _ﬂ%éﬂ_ 2a" b (a+31) (72)

(n¥2b)~/5 {ua(n+6b) (a+2D) + 4b3(2a+b)}
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In the awpecinl case of 'a = b, 1llustrated in figure 4,
we obtain (with = = 2.6):

G .

7 n°E n2E
= L = 0.1944 T E __ 73
% " 36 ey T O MM e (7e)
L™ o111 E (74)

79 /)t (1/)°
o5 = | 0.4845 + 0.04251 (\%:? %)a} -(—%%g' (75)

-

pg = = 0.2680 777;35 . (76)

Thea .0p follows, according to equation (58) or with the

ald of Mohr'!s circle. We kave included in figure 4 the
curveg for Wagner!s fornulaB):

a8
G Jqp + ?E E.C*
Oy = % (77)
P

as well as Bleich's formula (65) or (67) for comparison.
For a = b, 1s obtalned:

a a
e = s\ 1,_ _m E
oy = [0.62239 + 0.,01466 (\.b,_l ('b) ] (-_L—/—_g-)-g (78)
and
0.%693 2g
031 e4cn=0+1944 [1 - ] (:/b)g )

a 2
0.4345+0.04251 (%) (%)

The dipcrepancles between oy &and oOp as explalned

in section 6, increase with wall thickness and length,
whlle tho ¢(ifferences between Og1eich 2aBd Op are groat-

e)c* 1s identicel vith Wagner's Cy3,. Ho then addod (dia-
regarded here) the term Opg, connected with the transverse

warplng, but which sorves no usoful nurposo unloss it pro~
clsoly ncrtains to vory short columng of unflanged angle
section, T soction, or cruciform section.
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est for small length and wall thlickness. The curve of the
twleting fallure stresses op cannot approach the Euler

curve (0p) “for buckling perpendicular to the axis of

symmetry, excopt asymptotically, according to equation (62),
although it can intersect the Euler curve (Gy) for buck-

ling in directlion of the axls of symmetry. Thipg is the
caso for so much shortor lengths as the sectlon wall is
thickor.

4, THE GENERAL CASE

If the ocross sectlon reveals nelther axial nor point
symmetry, the warplng moments ga, ns' @ do not dissppear

and equations (44a,b,¢) are, as a result, coupled. In
equation (45)

gs = g1 8in %?. nB = ag 8in %F, ® = ay 8in %?

therefore the unknown coefficlents a;, ag, a;, are mutu-

ally donendent and result in threc linear, homogeneous .
equetiors, whose determinant must disappear for the ocrlti-
cal caso. This rclatlion supplies a2 cublc equation for the
three potential twisting-fallure stresses Op,s ODg+ Ong,:

of which, of course, only the smallest retalns our intorest.
The lnescrtion of the Op vdlues glves three different ra-
tios oi/as and ag/as oach, which define the position

of the three centers of rotation D;, Dg, and Ds, =as ls
scen from the followlng eguations:

kg = u—s P = - ¥ga P = + ¥p P, 8o that ¥p = as
(80)
- ~ Bg
Mg = ;; ®=+x;, =~ xp @9, 80 that xp = - ;;

¥ith the abbreviations (46), (47), (48), and (56), as well

as
B .
P = 11; —T_—B:Z— (81)
y LARE ' :
Ta E J:E'v

Bxy 'La —]-"—“- (82)
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the dlsappearing determinant

i T e
T’ E Jy - Op F {5 E ny fi =z Ry
a a a
I B Juy TI: EJgy - 0p F I3 B Ry =0
1 1 1
2 m8 3
?5 E Ry ;5 E R, IE EC+ G Jgp =~ Op J':p
nAy be written 1n the form:
9 = 9D Pxy Py
Pxy .0x = 0D Px =0 - (83)
Py Px g = Op

Equation (83) im the well~known "secular equation" which
reads?

ops® - UDB(°s+°k+°y) +0p (00 + Og0y + 030y .

= Pxy® = Px” = Py°) = (05040, + 2pzyPzPy -

- px8 g.) =0 (84)

pxy a PF o ¥

am
-

All roots are real (symmetrical determinant!) That
they are always positive as well, is seen from the follow-
ing. The integrands of Ay and 4, 1in the strain quan-

tities £5, My, ® and thelr derivatlves, respectively,
being quadratic and homogeneous, 44 and Az become
through (45) homogeneous quadratic functions of the coef=-
ficients a,, az, and az. The result is:

-

a 3 a
b =17 L%E.E Jy 818 + 2 %; EJgy a1 g * I5 B Uy 8g% +
2 78 e
= ¢ (aln aao as) (85}
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and a
e Ay = v_%EWOb.[F(aIB.+,aaa).+ J,-&az2] =

P
= Op V(a,, a5, a,) (86)

Since the difference 4y - A, and with it O - op V¥
shall be a minimum, the three equatlons
a(@ - Op W)
0 aj

=0, 1=1, 2, and 3 (87)

muast bo complied with. Obviously, these are ldentlcel
with those obtained from (44) through (45), whose disap-
pearing determinant leads to equation (84) and so, to the
threoo values OD,» ODgs OD, and to the three ratlios a, ¢

aa ! a3. To & - op V¥ aos homogeneous quadratiec funetlon

of the 24, the Fulcr fornmula:
(P - o (P - oy ¥
W), p ¥
9 &, 0 ajs
2. o, V)
e I

i1s anplicablo; that 1s, the differencc, becauso of theo
throe ognations (87) is

which in the preosent case proves the correctness of the
double statement Ay) - Ag = min = 0. Such a proof cen be

quite generally adduced when introducing

in place of (45), because & and V are again elways ho-
mogeneous quadratic functions of a;, ag, and az. The so-

lution of equation (89) with respect to op gives:

5 (%, %
O_D _ ¢(51' g 53) - & A (91)

" wla,, ag, 85) v (e gg)
3 &g
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a
where, of course, the values ;l and EE should be in-
3 3

serted (but which follow from (87), not before). Having

thus defined ¥ oand ¢ as vosltive, ag 1s readlly seen

for ¥ from (86) and for ¥ from its physical signifi-

cance, 1t follows from equation (91) that the threc roots
dp,s» Op,»-ond Op, &are ell positive (1.e., compressive

stressos).

The nmremise Ay - Ay = min = O can, moreover, be re-
Placed by the other demand:

®(tg, Bgr @)
Op = min [E?E:T—ﬁ:. ¢)J (92)

wvherein ES. Ngs» ® would be the solution functions (un-

known ns yot) of the problem. The differential equations
for thcso functlons rnnd also of op 1tself, are obtninod

from eguation (92). The variantion carried through, gives:

Vs d -0 8V =0 (93)

§ ¢ -

€|

8§V =68(0 - op V) =58(4y =4,) =0 (94)

which »roves the vprevious srgument.

The nractical polution of (84) is best effectod with
the gronh for the cuble aquatlon glven as figure 5:

w? - 2w + pw-q =0 (95)
Hereby:
Og Ox + Oq Oy 4+ Oy Oy _ 8 . Px8 . Py?
p = 28 °x s Oy x Gya Pxy x v (96)
m

q = Oy Ox Oy + 2Pxy Px Py - nya Oy - Py® Ox - Px® Oy (97)
= =3
m

O'S+O'x+0'

- ¥ (98)

Op =

Firgt determine: Og» Ox» Oy, then o,, Py, 4, and read
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the particular minimum w velus from tho chart. The

- twlstling-fallure stregs then follows as

Op =W O . (99)

For very thick—ialled gections, the conditlons resen-
ble those of the special case discussed previously. One
of the three roots, say, op,, 1s apvroximately equal to

the very hlgh etress Og:s while the other two roots folw
low from equatlion (84) divided by Gg+ The buckling here
is practically froe from twisgt. With x and y as prin-
clpal azcs, for oxample, = 0), 1t is Op, * Ox and

° e u;y
Dg. ™ "

5. REFERENCE TO ANY REFERENCE POINT O0; TWISTING FAILURE

FOR FORCED AXIS OF ROTATION A

The cross—sectional shane bolng presorved, the de-
scription of the atrains can be made with three (on z de-
pondont) sots of data. This time, however, the chosen
straln quantlties include, eside “rom the angle of twilst,
the displacoments &,, TN, of an arbitrary rofercnco point

O. O 1s to have thec coordinates x,, ¥y, and from the
origln of a coordinesto systom X, ¥ parallel to x, y.
The unit warping « roforred to the roal center of roto-

tion D 1is oxprossed, nccording to figure 2 (ef. oqua=
tion 9), as:

-y

We=W+ X,y ~Fox+ K (100)

Horeby the unit warping W roferrod to 0 is given
throuch

u
T o= W + j/ Ty du (101)
Furthor, 1t is - °
bo==Fo® Mo =+ % ® (102)
that 1e: . .
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The resuvlt is:

z='L
a
4 =2 {E Iy b+ 2E Jpp b" M) 4 B oI n,"T 4
2=0
+ 2F iy go" ®" + 2E By No" o +
8 .
+EC Q" + 6 Jnm m'a:}dz (104)
7ith
2
B, =/ x w 4F (105)
F
Ry =/ y ¥ 4F (1086)
L
vy
3 3 a3
[« =/ 7 4aF - %(/ v dF) (107)
tloreover: F F
t =t, -5 o, NM=MN, + X (108)
and
";B = - yon EB = = xO (109)
Z=1:
4g = Op % _/' {F (Eo'a + ﬂo'a) + EP p'? +
Z2=0
+ 2F 3, B0 @' - 2F x, N,' © }dz (110)

Herewith follow from &(43; - 4,) = 0, tho throco differon-
tlal equations:

By, £,V + B

v NIV + Eﬁy oIV + gy FE" + op Fy, 0" =0

y
(111a)
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By LIV + BI N, 7 + BB, o'V + op FN" = 0y Fxo ® =0
AR . e (111p)

BE, 8,17 + 2R, MotV + 28 0tV + op P oy, £," - Op Fox, M" +

+ (0p T, - 6 JIp) @ =0 (111e)

These equations (111) are more complicated than equa-
tion (44), but they can be considerably simplified when
introducing the actual center of rotation D as arbitrary
referonco npolnt O, because

tpb =0, Np=o0 (112)
They thon bocome:
2 Hy 0V 4 0p ¥ vp ®" = 0 (113a)
TR oV - 03 Fxp® =0 (113b)
EE 7+ (opF, - 53dp) 0" =0 (113c)

wheredy the warping mouments:

~ /*

R,

and
R, =‘/ y & d4F (115)
L3

as woll as tlho warping strength C depend on the (yet un-
known) wosition of the conter of rotation D, ZEquation
(113¢) is in accord with equation (26), obtained from the
condition for momont equilibrium about the axis of rota-
tion of a column olement. The equilibrium condition L2 =
0O for tho forces in column direction 1s alroady met by

equation (32)
2
J/ v dF =-0

thus oliminating the sghond tcrm in oquation (107) and
leaviang for & tho simnlor oguation (25):
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ra
G =‘/ 7 arF
F
Bquetions (113e,b) are the proviously cited conditions for
equliibrium of tho moments about the y and x axes in
connection with the equilibrium conditions £ X =0 and
ZY = 0 for any column element. This is readlly seen from

the expresslions for the bending moments and transverse
forces. Tith equation (31) the bending moments are:

13

By=/x6dF=—E§.ycp" (116)

and ¥
By = /[ y G 4F = = E By " (117)

yi

and the transverse forces:

Qe = = / "Fsdusi_na,=+/‘r'sdx=-Eﬁy¢"' (118)
= “F
and u=to
u-fuR ‘a .
Qy = + % 8 du cos o = +‘/ T edy =-ER_ 9" (139)
u;u7 tF

when 2vplying the relation:

o

aF (120)

At

TB=+ECP'”

11=11°

following Irom equatlon (21) and effecting & particl inte-
gration,

Writing the expression (2) or (9') into (114), (115),
and (25), givos:

By = By + %y Jpp = §g 0, = By = xp Jpp + 7 Iy (121)
Ry = Ry + %, 0 = §g5 Jyy = By = xp I3 + ¥p Ixy (122)
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and 0 =C+ xpf J, - 2xp ¥p Tey * yo© Iy
- 2xp By + 2yp By (123)
Thon ogquation (113) can be solved with '
® = & sin %f (124)
yielding et first:
s ER a ER
o, = Tz X, op = - = =& (125), (126)
T FYD T FID
and
G Jp + I E C
U'D = s (127 )
. J'O

-

By oliminating oy from each of two equations, the
unknown distances =xp and yp of the center of rotatlon

can be determined, after which insertion 1n one of the
three (125) to (127) gives op. Compared with (95) to (99),

this method is extremely tiresome, since the equations for
xy and yp are couplod and of thec third degree.

Admittedly, conpiderable simplificatlion obtains if
symmetry prevails. With Ry =0 and yp =0, for ex-

ample, oquations (126) and (127) bocome:

op = - 12 ERy Tp Ix) (128)
12 F xyp
and

. G-Jp + T2 E(C - 2xp Ry + xp® Jy)
Op = L (129)

a
Jp + F Xp

-lr

From this follows as dlstance xp of the axis of rotation,
from the center of gravity, the guadratlic equation

1 G a Jp

. J
xf = Xp - -2 -0 (130)

Rx
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Owlng to0 the term (jb> (% jT Ia, xp 1s not only de-
T

pendent on the cross-sectlonal parameters glven through
the section center llne, but also on the wall thickness

a a
and the column length (parameter (%) (%) , where D

denotes any cross—sectional dimension.g))

Effcctlng any axls of rotetion A 1intersecting the
axls of symmetry -~ by hlngellke guldances along the whole
bar (fig. 6a), for instance - affords the following equa-
tlon:

G Jp + %; E(C - 2x, R + x,2@ J_)
Op = (131)

3
Jp'l'FxA

which springs from equation (129), if =xp is replaced by
X4, the distance of the axls of rotatlon A from the cole

unn axls passing through S. For, as 1g readlly seen, the
reactlon forccs appearing on the zuldes have no offect on
the equiliBrium of the momecnts about the axis of rotation
A&, and oquations (26), (113¢), end (129) retain thelr vo-
l1idity, if A 1is used instead of D. But now equations

(113a,b) ore no longer avplicable, because the roactions

nodify the transvorse forces ir thc individual cross soc—
tions. Though the ororsy oxpressions 434 and Ay (oqua-
tions {(104) and (110) ronain the same, only ¢ may be va-
ricd in §(A3 - A;) = 0, =as @ now constlitutes the solo

indepondent guantity.

Fizure 7 1llustratcs the relation of critical conm=
prossive strees o to dlstance x3 for a certaln chan-

nel section. The extreme voints of the curve 03 = f(xA)
are at the same time thc zero points of equation (130), as

9)‘»'!"h:lle reading the proofs of this article, a revort touch-~
ing on the same subjJect by E. E. Lundquist, ontitled: "On
the Strergth of Columns that Fail by Twisting," appeared

in The Journal of the Acronautlical Sciences, vol, IV, no.
6, April 1937. Referring to H. Wagner (referonce 4),
Lundquist proceeds from oquation (127) and postulates for
the exls of rotation such a posltion as willl cause oy

to be a minimum. This method leads to the solutlion of an
equation system - (125) to (127) - (or of (128) and (129)
for symmetry).
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can be Proved from a differentliation. The two roots of
equation. (57) .therefore agree. with_ the extreme values of
equation (131)., This 1s directly connected with the pre-
vious formulatlon of the energy method in egquation’ (92),
because the numerator or denominator, respectively, of
equation (131), 1s proportional to the respective internal

or external work in establighing the sine formula (124),

For =x3 = o, 0 18 equal to the Euler stress Oxe

This case can be enforced, for example, with guldances of
the type of figure 6b. The result of the force couples

due to the guldes ig that the tranmsverse forces applled at
the .crose seotions always assume the posltion demanded by
the equilibrium. On the channel section of filgure 6b, for
example, the transverse force Qy mugt pass through S on

account of the central compressive force, which 1g impos~
8lble without guides.

Tho cases clted in figures 6 and 7 are of signlfilcance
ingofar &8s columns of open sectlon are frequently used os
stiffeners of the skin of stressed-skin structuros. The
axis. of rotation is in thls case subJect to conslderable .
dieplacement toward thas sheet which in addition furnighes
an oelastlc support ageinst twisting, resgulting in a marked
rige of critical compressive strenss compared to the values
computod here, A nathematleal annlysis of the two effects
on comblned actlon of metal gkln and contoured columns is,
of course, quite difficult.’ !

6, RELATION OF TWISTING FAILURE STRESS op TO

WAGNER'S CRITICAL STRESS oy

With center of shear M chosen as reference point
in tho sense of the preceding chapter, we obtaln, 1n place
of equation (111), three corresponding differential equa-
tions for the displacements of the shear center &y, My,
and the angle of twigt @. With the unli warping w* as
definod in equation (11) and referred to the shear center,
C” now-replaces T, that 1a:

[&]

-c"' = / w*@ dl" - JF; (/’ o ar )a .. (132)
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Oring to equation (10), the momentes
ing and ix
plification over equation (111):

By" Ejj/ xw* aF = 0, R*=S

synm try with the
Y = 0,

EJZT]HIV+O'DFT|M“—O'DFIMQD"=O

EC* ¢V + (0p Jp" = 6 Jp)@" - Op F oxy My" = 0

Using the abbreviation

L ]
and -By
disappeer, which affords a certain sim-.

3
/yw"'d.F:O

Only the symmetrical case 1s treated hereafter.
x axlg, ve obtaln with ny

the following equations from equations (1llb,c

861

replac=

(133)

For
= 0,
)310)

(1342)

(134Db)

oy for Wegner's critlical stress,

according to equation (77), in conjunction with equation

(45) for the critical compressive stress oOp, we have:
Xy
O'I - Op Op 1'—;
b =3
= UDa (1 - —335) - 03(0M+cx) + Oyo, =0
M g L g ip
%p 7+ M= (135)
b
thet ls:
— 2 xy®
Op = 1 {O'x+0'u F ﬁcx-cn) + 40 Oy n *8} (136)
2 (1 - E!il) P
1. * '
or clse:
1 _1f1 1 4 1 1\? I
I A S 1 _1) 4+ 4 ¥ 36
op 2 {Gu Ox (GH Gx) oM Oy 1P* (1361)
If x # 0, neither oy nor .“x are critical
stresses, as geen from equations (135) to (136'). The

relations?

10)ge, equeations (53a,b).
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2 .
=2 {1.?‘_6‘ / 1 - -—") + 4 Z{ :“:, (137)

b
op 1 oy , Op xy® S 2
and Ex = = {1 4+ a‘ + (1 - J) + 4. K 32 } : (138)
. D . 2 M / 0’M GL{ 1P'=’ )

following from equation (136!) are illustrated in figure 8.
It inmediately affords the percentage of error incurred
when tho crltlcal compressive stress op 1s computed by

Wagner's formula (77) or according to Euler's (47). The
error increases with the ratio, roepectively, of oy/0,
or 0./0y and with the ratio Gu/ipm, dependent'on the

gsection form as, for example, 1s shown for channel gec-
tions egainst asnect ratio s/b in figure 9. The dis-
crepanciocs between op and oy, and betweon oOp and Oy,

respectlvely, are loast when the ratio

c* + £ & 55, 18

Ty a T

K _ n” B (139)
x Iy 1

i1s a minirum or maximum, rospoctivoly; i.e., 1ln tho case
of vanlshing wall thicknoess of column length, respectivoly,
for very groat wall thicknossos or column lengths. Ia
theso ceses tho avpproximete formulas:

O Oy Xy8
-6'3—1-1+-U£l3 (14Q)
D x 1.* .
b
or
xa
s B R ' (141)
D o ip‘

are avpllcable. The latter i1s in agreoment with the ap-
proximato formula (62) and with equation (67) for Opjg4che
For the case Oy = Of.

g!) _ (gs\ 1 (142)

L
D Oy 0= D’cx/au=1 ip

is exactly wvolid.
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If limited to values below 1 for oy/0, (shorter colw
umn lengths and well thicknesses), respectively, and for
cx/cu greater column lengths and wall thicknesses), the

error for op  conformable to (77) and (47), respectively,
cannot exceed 100 percent, according to equation (142).
The maximum error in the most unfavorable case is 97 per-—
cent for channel sections, according to flgure 9, and 82

percent for the case (% = 1), illustrated in figure 4.

In realit& the maximum error herc does not excesed 44 per-
cent (fig. 4), because the Euler stress oy for buckling
in symmetry direction becomes less than 0Oy for fairly
short lengths, so that starting with such lengths the crit-
1cal stress would then no longer be computed by Wagner's
forruls (77) but by the Euler formuld (46). Such limita-
tion of the maximum possible error exlsts, for example, oOn
all channel sections with a/b > 0.73 (0y < 0g). Figure
8 showc the maximun values of ou/op for channel sections
with a/b > 0.73 as a dashed curve. For the rest, tho
usc of Tigurc 8 in conjunction with Wagner's formula (77),
1s of real advantage only 1f tablecs for G*, J*, and xy

arc availablo; otherwise, equation (58) glves quicker re-
sults.,

It also will be noted that the Wagner stress oy 1s

directly obtainable from thc encrey method through the
arbitrary (Ritz's) formulas:

Ey =0, Ny =0, ® = az sin T—;‘E (143)

which, written in (104) and (110) for 43 and 4Ag - cen-
ter of shear M replacing reference point O - gives:

Ay -~ Ay = ®(0, O, ay) - op V(0, O, az) >0 (144)

that is )
op < 90, 0, 2, (145)

v(o, 0, ag)

Then the equal sign, roplacing the unequal slgn in (144)
and (145), gives the Wagner stress oy. The reason that,

in splte of the doubtfulness of the mothod of making ar-~
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bitrery essumptions for several variables, the errors are,
.on_the wvhole, .not.excessive,- 14 probably .due. to.the fact
that in (145)- accidentally, at least = the numerator &
was made. a minimum through (143), bocause 1t conslstas of
only twe quotas:

l ‘l
%f E C* " dz and é/ ¢ Jp @'? ds
.0'.

(o]

and from ©C% 1% can readlly bde éhosn that under all pos=
eiblo veluos it has the sgallest.ll) For angle and T
sectlons, for examnple, ¢ = 0. :

Reverting to figure 7 and equation (131), applicable -
in the case of symmetry with the x axle: While the min-
imam of 0y 1s equal to op, (equation 58), the require=-

ment of a minimum value for the numerator gives, wlth al-
lowvance for equation (15):

» Rx _
(IA) = 'J'.; - In (145)

l,e,, the Wagner stress:

%*

2
G Jp + O3 E (c - EI—) L g c*
1 g /. 1

— = 4
(0A> = Oy = = T (147)
This gives the relation:
8
R (148)
Jx .

valld for symmetry with the =x axis, whlch can be employed
in the numerical determination of C . .

11)50rmulate: & [i(' w*® ar-1( / w* ar)®] = 0. Then the
' P

introduction of equation (14), representing a purely geo-
metrical relation, gives the equations (10) defining the
center of ghear,
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On the other hand, a much more comprehensive view
of the relation exlsting between the Wagner stress oy

and the actual twisting-fallure atress than 1ls afforded
from equations (136) to (138) is obtained from eguation
(134b) 1f My 1s expressed with o:

ﬂu = iu P (149)
Observing that
in = Iu - ID (150)

the conventional sine formula glves the followlng relation:

a3
¢ Jp + = E ¢”
718
Op = (151)

For the numerical calculetlion of Op» thie cquatlion

s not oxzpedient, as 1t would first requlre the calculas-
tlon of tho distance Xp Dbetween centrold and center of

rotation from the quadratic equation (130). The signifi-
cance of thls relation liles in the convenlence of compari-
son with equation (147) for oy. Roplacing =xp with the

shoar conter distance xy = EI in tho left~hand side of
x »

equation (130), it becomes ncgative becouse, obdsorving

equation (148), we obtain the followinz inequation:

G* + -l- 9— JT 'La
- L <0 (152)
Jx

x veluos which In amount are greater than the roote of
equation (130) meke, on the other hand, the left-hand

slde positlve, giving a pilcture as shown in figure 10.

xy accordingly 'alweys lies between the two roots Xp, oOf

which oae 1s positive, the other negative (their product

is given through = JP/F!) according to equation (130).

To obtaln the lower critical stress Op, 1t 1s necessary
to insert the value having the same prefix as xy 1in eque-
tion (151). But this xp value being always greater in

amount than =xy accordiag to the foregoing, it follows
that o0p < Oy.
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For great Jqp 1° the distances xp and zxy and
. consequently, . op .and Oy~ differ very. conglderadbly, ac~-
cording to figure 10. The difference becomes less as the

wall thicknoesses oralengths becwme less. But in the ox-
treme case of Jp ° = 0, they disappear for angle and T

sections only, because ¢* =0 rfor these sectlons only,
so that then the equal sign takee the place of the <
sign for Jp 1® = 0 in (152), For all other (mot doublo

symnotrical or point symmetrical) sections, thero always
romaing o finite distance betweon contor of shear and con-
ter of rotation and consequently, a difforence between

oy and op (soo also equations (139) and (140)) even if

8 =0 or ' =0.

7. SUPPLEMENTARY NOTE FOR THE CASE IN WHICH

! ond s ARE VERY SMALL

For vory small column length and wall thicknoss tho
thecory cdvanced hore falls because then tho twist is nc-
companled by buckling of tho walls and the eross-soctional
shape 1s, as o result, altorcd. The twlesting-fallure
strcesos as computcd with equations (58) and ?99). respec-
tivoly, would in that case bo no more than a very rough
npproxination undor certnain circumstances, and a.mathomat-
lenl troatment of the oxisting conditions is quite diffi-
cult. For curved-section conter line, for example, 1t
would present a complicated shell problem involving other
than the usually allowed-for "tensile stresses® &,

"flexural stresses" & 1linearly dlstributed over the wall
thickness. Besides, the immedlate effect of the shearing
stresses T on the strains would in most cases be no lon-
ger negligible, as they are in noway always small on ace—
count of the short column length (shell length). They are,
therefore, in general, no longer computable with (30) from
the equllibrium conditions (21) and (120).

For gectlions bullt up from e few straight pleces, the
solutlon may perhaps be somowhat easier, but here also,
the argument made for T, holds true. On the other hand,
allowance for the bending stresses &G linearly distrib-
uted over the wall thicknoss is made easler, since it is
posslble to apply simple formulas for the change of cross-
soctlonnl shape at bduckling. The simplest case of this
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kind 1is that of a cruciform section. Here, evon for very
11ttlo wall thickmess (in first approximation) the cross~
sectlonal shavo 1le proservod and the twlstlng of the crogss
sections about the controid (double symmetry) is identi-
cal with buckling of the walls after one single half-wave,
tho walls being visualliszed as plates pin-ended at ono

geldo and freo nt the other. The "tenslle stresses" &,
constant over tho wall thickness, disappear in this case

becnusc C = C = C* = 0. If b denotes tho leg length
(vidth of plates), formula (48), as well as Wagner!s con-
formeable formula (77) (S = M!), gives:

op = 29T _ E 82
Jo  2(1 + p) b°

(153)

Tho twisting-feilure stress or dbuckllng stress oy

ls accordingly unrelated to the columnn length. But this
result 1s valld only 1f the length does not fall below a
certain amount. 3Because, as the colunn length becomcs
lesg, the hitherto ncglected "flexurnl strosses" & lin-
early digtributed over the well thickness , become of
ever—-incroasing eignificance and result hore in a rise of
ecriticel comprossive stress. The completo Wagner formula
(sec footnote, . 32) 2llows for these bending stresses

& br cdding the torm Cpgq,, reoloted to tho transvorse

varping, to the term Oz, = G*, connectod with the clr-
cunicronticl warplng ond tonsilc strosses 3, rospoctive-

2= 1 3 3,
ly. Loro deu =0 and cbdn = <§> b s°; and (153) is
revlcoced by the more exact wvalues:

1 a8 ba g2 )
o} =z (—erm—t— ¢+ —— — | B — 4
Wagner <2(1 ¥ p) 12 137 7 p?® (154)
rig ccuation is, up to o fector 1 : (1 - p?) in
the correctlon tecrm, 1n agroemont with tho approximato
term originally obtained by Timoschenko (roferonce 5) on
the bpolg of the Ritz nothod for buckling of plates under
the vproviously clted boundary conditions. It is seen that

the improvement through den for % > 10 1s already in-
significant (< 2 percent).
According to Wagner, the saome formula (154) would be

ugsed on an anglo sgsectlon of leg length b, but thls prop-
erly would be permlssiblo only when the axls of rotatlon
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D passod through the point of intersectlion of the two
loges. And this really nevor hapoens, as shown at the ond
of -the preceding clapter (unless it is intentionally ef-
fected through guldes, etc,.), while on the other hand, the
error 13 so much less as wall thickness and longth are
logs.12 Tor greater ratio 1/b, the correction given

a a
through C%E) (%) 1s meaningless, because then, propor-

ly, it would requlre a correction toward the other side,
which allows for thoe fact that center of shear and center
of rotatlion are not colncldent. Even so, the error is
léss than 11 percont despite the great value lxu|/ip* =

0.61l, nas can be readlily proved, because at falrly small
retlo l/b, Buler buckling already takes place in diroc-

8 a
tion of the axis of symmetry (ut (%) (%) = 1.07>.

Sinilar conditions proevall on the ;.uneven leg-angle
section oand on the T section, where C likewise = O.
But for 2ll other sections, nllowance would have to be
made for tho chango in cross—sectional shape induced by
bucklling. Evory sectlon therefore presonts a new problem
whliech 18 probably solvable for the simpler cases only. The
ectual crltical streosses rro lower, rather than highor,
comparod to tho twlsting-~faillure strosses computed accord-
ing to (58) or (99).

8. PRACTICAL DETERMINATION OF THE VALUES Ry, Ry, aond c

The stoarting polnt for computing the warping moments
Ry, Ry and of the warping strength C dependont on the

cross~goctionnl sghapo only, is formed, as scen from equa~
tions (37) to (39) by the unit warping w referred to tho
controld which, according to figure 1, can bo determinoed
as aroas. For sections buillt up from stralght plecos, the
calculation becomes fairly simple because the w aro in
soctions, llnear functions of the circumferentlal coordl-
nate u, a8 vell as tho coordinates =x, ¥y of any polint
of tho scetion center lino. Thon the integrals for Ry,
By, and C can be computod exactiy from-tke following for-

mulas, in which ¥ and w denote eny linear function of

12)In contrast yith the doubly symmetrlical cruciform sec-
“tion, & =and C dlsappear on the angle sectlion only in
the extrene case.
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u ot interval u ., € u € u:

u
k
fﬂl(u)w ('U.) du = —A—suj[wk_z (a.uk_1 + wk) +
e, + Ve (2w + wy, )]
o= _A_G'U.J [wk_l (apk—l + \Uk) +
+ Wy (2Wk + wk—l)] (155)
'S
T8 A uy a 2
V. (u) du = —T;J [wk—l + wk-1 Wk + Wk ] (156)
o,

These formulas, whose calculantion is best effected Dby
tabuletion can, of course, be employed also for ascertaln-
ing the inertirsl and centrifugal moments. They are also
applicable for partially or completely curxed center line
if 1t 18 replaced by a set of straights

Qulte often it will be of advantage to apply, instead
of the w referred to S5 other unit warping w referred
to any favorably located reference point 0O, With the
equation (fig. 2):

W=w+3Igy - ?s x + K (157)

a simple calculusg gives the followlng relations:

) X
B:‘, =[ x w 4F R-y:' + Fg JI’ - Es(']xy +/ w dF) (158)
“F e

By = /| ywdF = Rg = g4 Jx + 'is<ny -l w dF> (159)
'.F [

For the usual section forms, a tabulation of the numer-
isal vaolues for R, By, C would be sultable slimilarly’

ags for the crogss—sectionnl area and the inertlia moments.
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3 Y 8
c =/ 2 4F -% (/ w d.]') =0 + -x-aa Jz -
P - - AN sr g mrome "
.. A . — ¥

-

~ 2%y Tg Jxy + Fo° Jy = 2%y By + 2Fg By (160)

Heredy

Ry =/ T w 4F, B: =/ 7w 4F (161), (162)
¥

The application of these formulas to a channel gsec-—
tion will sorve as illustration (fig. 11). Owing to the
symunetry with the =x axls, 1t is Ry = 0. For computing
R, and O, it 1s best to use the coordinate system X, ¥
parallel to =x,y that is placed through the intersectlon
O of section center line and axls of symmetry. Observing
the prefixes for ry and Ty as glven in sectlon 2, it
is seen thaet, when passing from point 2! to point 2, T4

has the positive wvalue a/2 for both flanges and value O
for the web, The coordination of the unit warplng wgo =

O +to point O, 4is followcd according to equation (101)

u

E=*ﬁo+/ Ty du
o _

by the unit warping artliasymmetrical to the. x axisg?

- ob — - - ab
Wl = = 5 w9 =0, W, =0, W, =0, Wy =+ ) (163)
whencé



44 NeAsC.A« Tochnical Memorandum No, 851

' 14)
¥ dF = 0O

Then equatiom (155) and (156) givo, 1n simple fashion:

Ry = = % s a® b2 (164)
and
T = + % s 08 b3 (165)
It further 1g:
Ty = b ¢ (a+ 2b) (166)
and
1 a
= — + 67
Jx 15 8 @ (a 6Db) (167}

The final results, according to equations (159) and
(160) arc the oxprossilons:

a8 2
=~ — s a° b° a + 3b
Br = 8z = %3 Iz = = "5 " ¥ 2

(168)

g af b3 2a2 + 15ab + 26b°

12 (a + 2b)° (169)

G=E+'i:sa Jz

- 2ES B.'x' =
previously omployed in the oxample of section 3.

Tranglation by J. Vanior,
National Advisory Cormitteo
for Acronsutics.

Choosing thec onposlito sonso of rotatlon changes the
profix of T;, but not of W.
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center of shear M; : OS. :

X-y-System through any -~ _ _
reference point D; [T +OS e
x-y-Sysf.em through actual
center of rotation Dif °~ ™ +Y”d“

Fe=re 4 Zgcosa + ¥ sine«

Fr="T¢ + &y COS a 4 T, sin a

__._ ﬂz-*'}/-\\ Fr=rt4 X;cosa-Fysina
' Fe="¢* -+ Xz COS @ + Ty 8in a0,
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FPigure 3.~ Determination

of the twisting

failure stresses o‘Dz and o’D
3

from 6, ,0, .0y by means of a0 Y
Mohr's circle. o AR F’\
\ Ve@\\”i/ﬁ}ﬁ\
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ameo S \ v
o
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a/ —I Figure 4.- Twisting failure stress
1T against length 1 and
| wall thickness s of channel sections
' : __with a/b=1,
Fisure 6.,--Channel gections with E-uler atresses o'x md d according
guides(enforced axis to Eq. (73),(74) twistiflg failure
of rotation 4). stress op according to Eq.(58) by

_ means of Eg. (73),(75),(76), Wagner
stress oy according to Egq. (78) .
Bleich stress o’Bl ich according to
Eq.(79).
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Figure 5.- Chart for determining the
twisting failure stress
op= @ 0p from the cubic equation
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Figs. 5,7,8,10,11

the maximum values®of
denote length-width ratio a/b).

7p A Figure 1ll.- Solution
7 4 of and
_ C on U-channel section.
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Figure 7.- Twisting fail-
ure stress o’A
with enforced axis of
rotation A for a channel
section with a/b=1,
1/b= 24, s/b=0.1(Fig.4)
GJ'1'+nl—:E(C—2x.¢ Ry - x4t Jdx)

L2 I——

! Ip—+ F x4

Lerf-hono
s/de of
£o.(130)

(130) for x. .

&) Figure 8.- Curves for computing

twisting failure stress

Op from Wagner's stress oy and
- Euler's stress oy for open sections
with symmetry to the x axis.
bz . -xy/1*5 for-channel sections from

; for other sections compute

with Eq.(15). ---- curve for chan-
- nel sections in the extreme case

O,,. For channel sections with

>0.73, where ¢ <oy ,it gives

o’u/o'D. (Digits
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